Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

admin
Pinned May 27, 2018

<> Embed

@  Email

Report

Uploaded by user
AI identifies ‘invisible’ heart condition LQTS
<> Embed @  Email Report

AI identifies ‘invisible’ heart condition LQTS

Rachel England, @rachel_england

May 11, 2018 
 
 
 

AI is playing an increasing role in medical care, from spotting diabetes and examining medical scans, to taking the place of doctors altogether. Now, it’s able to recognize life-threatening conditions where traditional diagnostic tools can’t. AliveCor, the company behind KardiaBand, has harnessed machine learning to identify patients with Long QT Syndrome (LQTS), a condition that frequently goes undetected.

The QT interval is the measure of time between the start of the Q wave and end of the T wave in the heart’s electrical cycle — essentially the length of time it takes the heart to recharge between beats. LQTS means the heart takes longer than normal to recharge, and can lead to blackouts, seizures, palpitations and even death. It’s a relatively rare condition, affecting one in every 2,000 people, and is usually hereditary or initiated by drugs with QT-prolonging potential, such as antibiotics and antidepressants. But it’s very difficult to diagnose. As many as 50 percent of patients with genetically-confirmed LQTS show a normal QT interval on their electrocardiogram (ECG).

AliveCor, however, has now presented research indicating that deep neural network AI can successfully identify LQTS patients, regardless of their normal ECG reading. The data reveals a specificity of 81%, sensitivity of 73% and an overall accuracy of 79%. The results were obtained in a such a way that AliveCor’s KardiaMobile and KardiaBand could also be useful in the detection of the concealed condition.

The study’s senior author, Michael J Ackerman, said it was “stunning” that the technology could identify a case of LQTS between two patients with otherwise identical QT intervals. AliveCor CEO Vic Gundotra noted that “there can be no better illustration of the importance of our AI to medical science than using it to detect that which is otherwise invisible.”

Engadget RSS Feed

(27)