Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

admin
Pinned November 4, 2017

<> Embed

@  Email

Report

Uploaded by user
Harvard’s new RoboBee can fly in and out of water
<> Embed @  Email Report

Harvard’s new RoboBee can fly in and out of water

Mariella Moon, @mariella_moon

October 26, 2017
 
Harvard's new RoboBee can fly in and out of water | DeviceDaily.com
Harvard

Apparently, we haven’t seen RoboBee’s final form yet. Harvard researchers introduced the robot back in 2013 and developed a version that uses static to stick to walls in 2016. Now, the scientists have created an upgraded robotic bee that can fly, dive into water and hop right back up into the air. That’s a lot tougher than it sounds, since the tiny machine is only two centimeters tall and is about one-fifteenth the weight of a penny. For such a small robot, swimming in water is like swimming in molasses and breaking through the water’s surface is akin to breaking through a brick wall.

To solve the issue, the researchers from Harvard Wyss Institute and John A. Paulson School of Engineering designed new mechanisms that make it possible for the RoboBee to transition seamlessly from water to air. First, they had to figure out the right flapping speeds for its wings in aerial and aquatic environments. By using a combination of theoretical modeling and experimental data, they determined that 220 to 300 hertz is perfect for aerial travel, while 9 to 13 hertz is the perfect speed in the water.

Once that was done, they had to figure out how the machine can break surface tension to be able to get out of the water. They came up with a two-step system: First, the machine collects water into a buoyancy chamber as it swims to the surface. An electrolytic plate inside the chamber converts the water into oxyhydrogen, which provides enough extra buoyancy for the robot’s wings to pop out of the water. A sparker in the chamber then ignites the combustible oxyhydrogen, turning it into fuel that gives RoboBee the boost it needs to be able to get back into the air.

In the future, microrobots can be used for search missions, deployed to far-off places for surveillance before sending in bigger machines to rescue people. The RoboBee team hopes their work “investigating tradeoffs like weight and surface tension can inspire future multi-functional microrobots — ones that can move on complex terrains and perform a variety of tasks.”

Coverage: New Atlas
 

(12)

Pinned onto