Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

admin
Pinned August 6, 2018

<> Embed

@  Email

Report

Uploaded by user
Harvard’s robot arm can grab squishy sea animals without hurting them
<> Embed @  Email Report

Harvard’s robot arm can grab squishy sea animals without hurting them

Jon Fingas, @jonfingas

July 21, 2018
 
 

Harvard's robot arm can grab squishy sea animals without hurting them | DeviceDaily.com

 
 

As you might imagine, you can’t just grab extra-soft sea creatures like jellyfish or octopuses when you want to study them. Not if you want them to remain intact, anyway. Thankfully, researchers at Harvard’s Wyss Institute have a far more delicate solution. They’ve created a robot arm (the RAD sampler) whose petal-like fingers can quickly form a ball shape around an animal, capturing it without risking any harm. It’s simpler than it looks — it uses just a single motor to drive the entire jointed structure, so it’s easy to control and easier still to repair if something breaks.

To date, the arm has only been useful for catch-and-release experiments. In the future, though, biologists could outfit the machine with cameras and sensors to collect information about whatever’s inside the sphere, whether it’s the material composition, size or the genetic sequencing. If that happens, researchers could study fragile undersea critters in their native habitats and glean insights that wouldn’t be available above water or with dead specimens.

Engadget RSS Feed

(34)