Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

admin
Pinned January 6, 2021

<> Embed

@  Email

Report

Uploaded by user
Modeling the bizarre remnants of a supernova
<> Embed @  Email Report

Modeling the bizarre remnants of a supernova

When stars of a certain large size and energy run out of fuel, the result is a supernova explosion that can be spotted with the naked eye just once in a lifetime. Some leave behind a relatively spherical supernova remnant. However, others expand within dense clouds of gas and dust, so the leftover shells can become wildly distorted. Astronomers from the INAF-Palermo Astronomical Observatory modeled one of the most famous of those, called IC 443 or the Jellyfish Nebula, and showed just how weird they can get.

Modeling the bizarre remnants of a supernova | DeviceDaily.com

The model above shows only the heart of supernova remnant shell, with colors indicating density-weighted average temperature along the line of sight. It doesn’t feature the ethereal-looking atomic and molecular dust and gas clouds you’d see in a typical image of IC 443, which is located about 5,000 light years from Earth. “That’s because it only shows the material with temperatures of the order of million degrees Kelvin (which emits in X-rays), while the surrounding (non-shocked) clouds are much cooler,” lead author Sabina Ustamujic told Engadget by email.

The top image shows a smaller sphere seemingly bursting out of the top half of a larger half shell, so how did IC 443 get this unusual shape, known as a “mixed morphology supernova remnant”? In a model created by the team, the supernova event (likely a Type II supernova) “occurred in a highly inhomogeneous ambient medium, so the leftover neutron star and pulsar wind nebula sit off-center (toward the southeast) surrounded by a half-spherical atomic cloud and donut shaped molecular cloud,” said Ustamujic.

Modeling the bizarre remnants of a supernova | DeviceDaily.com

Salvatore Orlando, INAF-Palermo Astronomical Observatory

During the first hundred years, the ejecta expanded in a relatively uniform way. About 300 years after the event, however, it hit one side of the molecular donut, which slowed the forward shock wave and created a reverse shock. Meanwhile, the part of the remnant that didn’t hit anything continued normally, while the part that hit the half-sphere atomic cloud slowed down.

Based on the model (shown here in 3D), the researchers estimate the age of the remnant at 8,400 years. In its current state, the bottom half has expanded the most, creating the larger half-sphere shown in the image. The top part, meanwhile, was pinched on the sides by the donut and at the top by the atomic cloud, creating the smaller, offset ball. The hottest parts of the remnant with the most intense X-ray activity happen where the shock wave interacts with materials from the cloud.

The model explains the “very irregular and asymmetric distribution” of the supernova remnant in a “natural way,” according to a paper by the team. On top of providing a cool visualization, it could help future researchers figure out the distribution of chemicals in IC 443 and similar supernova remnants.

Update 12/30/2020 3:00 PM ET: The article has been updated with comments from Sabina Ustamujic, the paper’s lead author.

Engadget

(33)